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Abstract—Cellular network configuration is critical for net-
work performance. Current practice is labor-intensive, error-
prone, and far from optimal. To automate efficient cellular
network configuration, in this work, we propose an online-
learning-based joint-optimization approach that addresses a
few specific challenges: limited data availability, convoluted
sample data, highly complex optimization due to interactions
among neighboring cells, and the need to adapt to network
dynamics. In our approach, to learn an appropriate utility
function for a cell, we develop a neural-network-based model
that addresses the convoluted sample data issue and achieves
good accuracy based on data aggregation. Based on the utility
function learned, we formulate a global network configuration
optimization problem. To solve this high-dimensional non-
concave maximization problem, we design a Gibbs-sampling-
based algorithm that converges to an optimal solution when a
technical parameter is small enough. Furthermore, we design
an online scheme that updates the learned utility function and
solves the corresponding maximization problem efficiently to
adapt to network dynamics. To illustrate the idea, we use
the case study of pilot power configuration. Numerical results
illustrate the effectiveness of the proposed approach.

Keywords-cellular network configuration; learning-based
configuration; reinforcement learning; joint optimization;

I. INTRODUCTION

In this work, we study cellular network configuration. As
illustrated in Fig. 1, a cellular network consists of a number
of base stations (BSs), each covering a certain geographic
area, called a cell. In each cell, the BS has a large number of
parameters to configure, including those of spectrum band,
power configuration, antenna setting, user handoff, etc. The
configuration of these BS parameters has a significant impact
on the overall performance, and thus network configuration
is a critical issue. Current practice is mostly based on field
experience and manual adjustment. The process is labor-
intensive, error-prone, and far from optimal. In this work,
we propose a learning-based joint-optimization approach to
automate and optimize cellular network configuration.

The goal of network configuration is to optimize net-
work utility that measures service quality, such as network
throughput and user delay. Network utility is typically de-
fined as the sum of the utility of all cells. Because of the
geographic contiguity of cells, the utility of one cell is not
only affected by the configuration of its own BS, but also by
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Figure 1. An illustration of cellular network configuration. A red solid
line means that a mobile user is associated with the BS (i.e., the BS serves
the user), and a blue dash line means that the mobile user can receive the
BS’s signal, but is not served by it.

those of its neighboring BSs. Thus, to optimize the network
utility, the network should jointly configure all BSs.

The extensive literature on traditional network utility
maximization (NUM) has focused on abstract closed-form
utility functions, which often exhibit nice mathematical
properties. However, in network configuration, the impact of
a control parameter on network utility can be highly complex
and thus the utility function is difficult to derive from
analysis. Therefore, a natural step is to learn an appropriate
utility function based on available network data, and then
to optimize over the learned function. This approach faces
a few specific challenges:

• Limited data availability: Because current network op-
eration does not often change network configuration
parameters unless performance issues occur, each cell
contains only a limited amount of data.

• Convoluted sample data: The sample data collected
in networks is in the format of network state, BS
configuration, and the corresponding utility value. The
caveat is that the network state depends not only on
hidden environmental states that we do not directly
observe, but also on the current configuration. Thus, we
need to extract appropriate features to learn the utility
model.

• Joint optimization among cells: The utility of a cell
depends on the configuration of not only its BS, but
also its neighboring BSs. Therefore, to maximize the
network utility, we consider all cell configurations



jointly. This is difficult because of the complexity of
the utility function and the high dimensionality of the
control variables.

• Time-varying network dynamics: Because of inherent
network dynamics (e.g., due to traffic variation and
user mobility), the utility function is time-varying,
as discussed in Sec. III-B. It is essential to design
an online algorithm that adapts promptly to network
dynamics.

To address these challenges, we propose an approach
based on online learning and joint optimization for cellular
network configuration. Our contributions are multi-fold:
• To learn the appropriate utility function, we develop a

neural-network-based model that addresses the convo-
luted sample data issue and achieves good accuracy.
The learned utility function is used to formulate a
global network configuration optimization problem.

• To solve this high-dimensional non-concave maximiza-
tion problem, we design a Gibbs-sampling-based al-
gorithm that converges to the optimal solution when a
temperature parameter is small enough. However, when
the temperature parameter is small, the convergence
time of the algorithm increases dramatically. To address
this challenge, we further design an online algorithm
that converges to a local optimal promptly.

• To illustrate the idea, we use the case study of pilot
power configuration. Numerical results show the ef-
fectiveness of the proposed approach. The proposed
approach can be applied to similar cellular network
configuration problems.

The rest of the paper is organized as follows. The related
work is in Sec. II. We present the system model and
problem formulation in Sec. III. The learning-based utility
prediction is conducted in Sec. IV. Based on the model
learned, an online-learning-based joint-optimization method
for cellular network configuration is proposed in Sec. V. We
demonstrate the numerical results in Sec. VI, and conclude
in Sec. VII.

II. RELATED WORK

Most existing studies on pilot power configuration assume
known models based on communication theories [1]–[5]. For
instance, in [1], the authors study the problem of minimizing
pilot power consumption while maintaining service cover-
age. The problem is formulated as integer programming
and solved via a Dantzig-Wolfe decomposition method. The
main limitation is that the modeling requires a significant
amount of real-time information, such as user locations and
wireless channel conditions, at any time. Further, even with
a known analytical model, most existing studies such as [2],
[3] focus on the design of heuristic policies.

We note that our problem falls into the general scope of
reinforcement learning (RL). However, because of the chal-
lenges discussed earlier, directly applying off-the-shelf RL

algorithms may not perform well. We next discuss related
work on RL-based network configuration. In [6], the authors
propose a tailored form of RL to configure the antenna
parameters in a single femto-cell to minimize the trans-
mission power. However, in a large-scale network, general
RL algorithms can suffer from large state spaces and action
sets. To address this challenge, a line of work exploits the
paradigm of collaborative multiagent reinforcement learning
[7], [8]. For example, in [9], the authors propose a distributed
RL algorithm to configure power allocation of all cells with
the objective of improving network performance. However,
distributed RL algorithms usually rely on heuristics and their
design is non-trivial. Along this line, we have designed a
distributed Q-learning algorithm as a comparison baseline,
as shown in Sec. VI.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, we propose a cellular network configuration
approach via online learning and joint optimization. Specifi-
cally, we demonstrate the idea in a pilot power configuration
problem, as illustrated in Fig. 1. Pilot power of a base station
allows mobile users to detect the base station, calibrate
signals, and estimate channel quality between the BS and
the mobile user. A mobile user can typically receive pilot
powers from multiple BSs, and based on which it decides
which BS to associate with (i.e., the red solid line).

A. Problem Formulation

We formulate the problem next. We use bold font to
represent vectors. Consider a cellular network of N BSs.
Each BS provides service for a corresponding cell. The time
is discretized. For each time slot t, the network state vector
is denoted by S(t) = (S

(t)
1 , S

(t)
2 , · · · , S(t)

N ), where S
(t)
n is

the state for BS n in slot t. Examples of network state
include the number of users, the number of active users, and
uplink/downlink load, etc. The network control is denoted
by A(t) = (A

(t)
1 , A

(t)
2 , · · · , A(t)

N ) where A(t)
n represents the

control variables for BS n in slot t, and its value is chosen
from the BS action set A. Pilot power is the control variable
we consider in this work, which takes discrete values from
30dBm to 36dBm with a granularity of 0.5dBm.

Let R(t)
n denote the utility of cell n in slot t and define

rn(·) as the cell utility function of cell n that satisfies,

R(t)
n = rn(S

(t),A(t)). (1)

That is, the utility of each cell is determined by the network
states and control variables. In the pilot power configuration
problem, the utility is the throughput, and the object is to
maximize the network throughput by choosing appropriate
control variables for all BSs at each time slot. That is,

max
A(t)∈AN

T∑
t=1

N∑
n=1

rn(S
(t),A(t)). (2)



In addition, note that in Eq. (1), the utility value depends
on all states and control variables, and is thus very complex.
To tackle this, we assume that the performance of a BS is
mainly affected by the network states and control variables
of itself and its neighbors. Thus, we make the following
approximation:

rn(S
(t),A(t)) ≈ rn(S(t)

N (n),A
(t)
N (n)), (3)

where N (n) = {n}∪{i| BS i is BS n’s neighbor} includes
BS n and its neighbors; S(t)

N (n) is a vector which includes

all S(t)
i such that i ∈ N (n); and similar for A(t)

N (n).
For example, in the pilot power configuration problem,

we choose the neighbors of BS n as the cells that have the
most impact on cell n’s utility. Note that the neighborhood
relationship may not be symmetric. That is, i ∈ N (n) does
not necessarily imply n ∈ N (i).

To further simplify the problem, we assume that the
network state S(t) does not depend on historical actions
A(t−1), · · · ,A(1). To satisfy the assumption, we need to
choose network states appropriately, that is, network states
should only depend on latent environment features such as
user density, user location, traffic type, and mobility pattern,
which do not depend on actions. Because of this assumption,
the problem defined in (2) can be simplified: at each time
slot t, we can choose the action that maximizes the current
network utility

∑
n rn(S

(t),A(t)). Thus, (2) becomes:

max
A(t)∈AN

N∑
n=1

rn(S
(t)
N (n),A

(t)
N (n)), given network state S(t). (4)

The network operates as follows: At the beginning of each
slot t, we observe network state S(t), based on which, we
decide in a centralized manner the configuration of all cells
A(t) to maximize the sum of the utilities of all cells at time t.
Note that, in contrast, our implemented baseline algorithm,
a distributed Q-learning algorithm, still uses the aggregated
throughput as the reward as in Eq. (2).

B. Network Dynamics

We note that networks exhibit time-varying character-
istics, which implies that we need online algorithms to
capture such dynamics. Network utility is affected by many
network factors, such as traffic type and volume, arrival
and departure pattern, and user mobility. However, some
factors are “hidden” because a network typically does not
and cannot collect all information. Therefore, when such
“hidden” factors change in the network, the expression of
cell utility functions, i.e., rn(·), can change over time. To
capture such dynamics, we need an online learning algorithm
to train the model as well as a fast converging algorithm to
optimize the configuration.

IV. LEARNING UTILITY FUNCTION

To learn a good utility function, we need to address two
specific challenges: limited data availability and convoluted
sample data, discussed as follows. We have employed a neu-
ral network regression model to predict cell utility function.

A. Data Aggregation

To fully utilize the limited data, we notice that a cellular
network typically consists of cells with similar structures.
Thus, we assume that the cell utility functions rn(·) of
different cells have the same expression, denoted by r(·).
Thus, the problem defined in (4) can be approximated by
the following, at each time slot t,

max
A(t)∈AN

N∑
n=1

r(S
(t)
N (n),A

(t)
N (n)), given network state S(t). (5)

With this unified cell utility function, we can aggregate
data from all cells to learn the utility function. This approach
alleviates the data scarcity issue, especially when the algo-
rithm needs to adapt to network dynamics.

B. Feature Selection with Convoluted Sample Data

The sample data is collected from an industrial-grade
cellular network simulator that is described in Sec. VI, based
on a random policy for pilot power configuration. Sample
data is illustrated in Table I, where ’Cell’ is the cell ID;
’Pilot’ is the current pilot power of the BS in this cell;
’Utility’ is the throughput of the corresponding cell with
the unit of Kbit; ’Users’ is the number of users in the cell,
and ’Cluster’ includes the cell IDs of the 5 neighboring cells
that have the most impact on this cell’s throughput.

Table I
FEATURES OF SAMPLE DATA.

Cell Pilot Load Utility Users Cluster
101 30 0.5934 616.3 19 233;184;202;185;171;
102 30 0.1458 63.2 2 101;177;180;184;172;
107 33 0.8991 357.8 19 211;115;114;219;113;

An important problem in feature selection is that sample
data is convoluted as shown in Table I. Specifically, the
values of the load and the number of users in the sample
data depend not only on latent environmental states that we
do not directly observe (such as user density), but also on
the current control variables, i.e. the pilot powers.

As a result, we need to carefully select state features so
that they 1) extract latent environment information as much
as possible, and 2) are as independent as possible from the
control variables.

Considering these two factors, we have tested the predic-
tion accuracy of several sets of features, as summarized in
Table II, based on a neural network regression model. We
measure prediction accuracy by the coefficient of determi-
nation R2 as,

R2 = 1− ηss

ηvarMsp
, (6)



Table II
COEFFICIENT OF DETERMINATION FOR DIFFERENT SELECTIONS OF FEATURES.

Features Training data Cross Validation
Pilot Powers, Load, Number of Users 0.729630 0.728747

Pilot Powers, Time-Average Load, Time-Average Number of Users 0.758423 0.717136
Pilot Powers, Cluster-Average Load, Cluster-Average Number of Users 0.127370 0.113907

where ηss is the sum of squared prediction errors, ηvar is
the variance of the target, and Msp is the total number of
samples. The larger the value of R2, the better the model
can capture the observed outcomes. Note that R2 ≤ 1.

The first feature set includes the pilot powers of the target
BS and its neighbors, the current load of the target BS, and
the current number of users in the target BS, as shown in
the first row of Table II. This directly uses the items from
the sample data. The prediction accuracy of this feature set
is about 0.73. However, as stated above, the load and the
number of users depend on the current pilot powers, and
thus this model is not useful in pilot power configuration. It
only serves as a benchmark for prediction accuracy.

To address this convolution issue, we consider two other
feature sets, as shown in the second and third rows of
Table II. The second feature set includes time-average load
and time-average number of users in the target cell, and the
third one includes cluster-average load and cluster-average
number of users, instead of the load and number of users as
in the first one. Here, the cluster average means that we aver-
age the load or the number of users among the target cell and
its neighboring cells. These two new feature sets alleviate
the dependency of state features on the control variables by
averaging over time slots or over mutually interfering cells.
As shown in Table II, the prediction accuracy of the second
feature set is similar to that of the first feature set while the
prediction accuracy of the third one is low. Therefore, we
choose the second feature set.

V. ONLINE-LEARNING-BASED JOINT OPTIMIZATION

After estimating the cell utility function r(·), we proceed
to solve the optimization problem formulated in Eq. (4).
This step is challenging because of the huge action space
for network configuration. In this section, we design an
online algorithm based on Gibbs sampling to solve this joint
optimization problem.

A. Gibbs-Sampling-Based Network Configuration

In this subsection, we focus on a single slot t, and solve
the problem in (4) for a given network state S(t). We omit
the superscript (t) in this section when no confusion is
incurred.

We begin with some notations. We define F (·) as the
network utility function:

F (a) =
N∑
n=1

rn(SN (n),aN (n)),∀a ∈ AN . (7)

Define Â as a random vector on the action space satisfying
the probability distribution Pr[Â = a] = πν(a) with,

πν(a) =
exp

[
F (a)
ν

]
∑

z∈AN exp
[
F (z)
ν

] ,∀a ∈ AN , (8)

where ν > 0 in (8) is called the temperature parameter.
We first introduce the following neighborhood concepts.

Note that the neighborhood N in our problem is not neces-
sarily a mutual concept, as discussed in Sec. III. Thus, we
further define the interaction neighborhood N (1) as,

N (1)(n) = {i|n ∈ N (i)} ∪ N (n). (9)

That is, N (1)(n) includes both the BSs that affect cell n’s
utility, i.e. N (n), and the cells that are affected by BS n.
We further define two-hop neighborhood N (2) as in [10],

N (2)(n) = ∪i∈N (1)(n)N (1)(i).

That is, N (2)(n) is the union of the interaction neighbor-
hoods of all interaction neighbors of BS n.

Then, by a similar argument as in [10], we can define
an undirected graph based on the neighborhood concept of
N (2) so that (8) is the distribution of a Markov random
field on this undirected graph of neighborhood N (2), and
the local specification of the Markov random field is,

Pr{Ân = an|ÂN (2)(n)\n = aN (2)(n)\n}

=
exp

[
1
ν

∑
i∈N (1)(n) ri(SN (i),aN (i))

]
∑
λ∈A exp

[
1
ν

∑
i∈N (1)(n) ri(SN (i), λ,aN (i)\n)

] ,
where N (2)(n)\n is a set including all the BSs in N (2)(n)
but excluding n.

Inspired by the Gibbs sampling algorithm, we have Mod-
ule 1. Module 1 aims at solving the problem for one time
slot t with a given network state S(t) using an iterative
algorithm. In this iterative algorithm, in each iteration τ , a
vector Ã(τ) = (Ã

(τ)
1 , Ã

(τ)
2 , · · · , Ã(τ)

N ) is generated, leading
to a sequence of output vectors Ã(τ), τ = 1, 2, · · · . In
Module 1, first in Line 1, based on N (·), the undirected
interfering neighborhood N (1) is constructed. Then, in each
iteration τ , Ã(τ) is generated by updating Ã(τ−1). Note that
ν > 0 is the temperature parameter as in (8).

Due to the property of the Gibbs distribution, it is possible
to show that Ã(τ) in Module 1 has a steady-state distribution
that chooses the optimal solution of the problem defined
in (4) with a probability arbitrarily close to one, if the
temperature parameter ν is sufficiently small. This ensures
optimality.



Module 1 Gibbs-Sampling-Based Network Configuration

Input: ν, Ã(0); N , N (·), S(t), A and rn(·) for each n.
Output: Ã(τ) for each iteration τ .

1: Init: Calculate N (1)(n) for each BS n by (9);
2: for each iteration τ do
3: Ã(τ) = Ã(τ−1);
4: Pick i uniformly at random from {1, 2, · · · , N};
5: Update Ã(τ)

i by picking its value from the action set
A according to the following probability,

∀µ ∈ A, Pr{Ã(τ)
i =µ} (10)

=
exp

[
1
ν

∑
j∈N (1)(i) rj(S

(t)
N (j), µ, Ã

(τ−1)
N (j)\i)

]
∑
λ∈Aexp

[
1
ν

∑
j∈N (1)(i) rj(S

(t)
N (j), λ, Ã

(τ−1)
N (j)\i)

] ;
6: end for

B. Accelerate Convergence

While it has nice theoretical properties, Module 1 has two
practical limitations. First, if ν is too small, computational
challenges exist due to numerical overflow because the
exponential factors in (10) can be extremely large. Second,
when the temperature parameter ν is small enough, the
convergence time for Ã(τ) in Module 1 can be extremely
long. Thus, in this subsection, we focus on a single slot t,
and design a fast converging algorithm.

The algorithmic design is presented in Module 2. It is
inspired by the insight from Gibbs sampling: In Module 1, a
smaller temperature parameter ν leads to a larger probability
of selecting a local optimum solution of the problem in (4),
while a larger parameter ν leads to a larger probability of
escaping from the trap of a local optimum. Specifically,
instead of randomly choosing one BS to update in each
iteration as in Line 4 of Module 1, Module 2 updates
the corresponding control variable for each BS in turn in
Lines 4-6. In addition, after selecting a BS, Module 2
chooses the value of the control variable of the selected BS
in a deterministic way in Line 5. This is equivalent to setting
the temperature ν to 0 in Module 11. Note that Module 2
speeds up the procedure by trading off the performance from
a global optimum to a possible local optimum.

C. Online-Learning-Based Joint Network Configuration

Now, we combine Sec. IV and Sec. V-A to design online-
learning-based joint network configuration in Algo. 1. In
Algo. 1, let N (t, n) be the neighborhood of node n in slot t.
Then, given a network state S(t), we obtain control variables
A(t) by Module 2 for each time slot t.

In Lines 6-7, we use mini-batch to train the cell utility
model r(·). For the model, we choose a neural network with
a 25-width hidden layer which has a good performance.

1There is a slight difference when there are two or more values of the
control variable Ã(τ)

i that achieve the maximum probability in (10), but
still one of these optimal values will be chosen when ν is set to 0.

Module 2 Fast Converging Network Configuration

Input: a
(old)
init ; N , N (·), S(t), A and rn(·) for each n.

Output: A(t).
1: Init: Let a(old) = a

(old)
init , and calculate N (1)(·) by (9);

2: repeat
3: a(new) = a(old);
4: for n = 1 to N do
5: a(new)

n = argmax
A

∑
i∈N (1)(n)

r(S
(t)
N (i),a

(new)
N (i) );

6: end for
7: until a(old) == a(new);
8: A(t) = a(new);

Algorithm 1 Online-Learning-Based Joint Network Config-
uration
Input: A(0), N , Bmax, initial cell utility model r(·), and

observe N (t, n), S(t)
n , R(t)

n for each n in each slot t.
Output: A(t)

n for each BS n in each slot t.
1: Init: Mini-batch B = ∅;
2: for each time slot t do
3: Observe neighborhood structure, let N (·) = N (t, ·),

and observe state S(t);
4: By Module 2, obtain A(t), with setting a

(old)
init =

A(t−1) and rn(·) = r(·) for each n;
5: Observe cell utility R(t)

n for each BS n;
6: Add the tuples (S

(t)
N (n),A

(t)
N (n), R

(t)
n ) for n =

1, 2, · · · , N to the mini-batch B; if the size of B
exceeds Bmax, drop the oldest tuples in it;

7: Update the cell prediction model r(·) by stochastic
gradient descent to minimize the loss function on the
mini-batch;

8: end for

VI. NUMERICAL RESULTS

We evaluate the performance of the proposed approach
on an industrial-grade cellular network simulator. The sim-
ulation scenario includes 87 cells, reproducing their geo-
graphical relationship of a metropolitan area. The simulation
also includes thousands of users, randomly located in the
area. Various aspects are simulated, such as wireless channel
model, network equipment performance, BS antenna posi-
tion, MIMO, etc.

We compare network utility performance for different
configuration algorithms. Two baselines are considered. One
is a random policy that selects pilot power uniformly at
random; the other is a distributed Q-learning algorithm.

The results of different algorithms are shown in Fig. 2.
Our Algo. 1 outperforms distributed Q-learning, in terms
of both the overall performance and the ramp-up time. It
is better in overall performance since it jointly optimizes
network control, while in distributed Q-learning each cell
makes decision independently. Furthermore, Algo. 1 has a
much shorter ramp-up time compared to the distributed Q-



learning algorithm. We have also tested the performance of
Algo. 1 with Module 1 and found that, our Algo. 1 still
approaches this Module 1-based slow algorithm.
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Figure 2. Total network throughput for different configuration algorithms.

VII. CONCLUSION

In the context of cellular network configuration, a
learning-based approach needs to address a few specific
challenges, namely, limited data availability, convoluted
sample data, highly complex optimization due to interactions
among neighboring cells, and the need to adapt to network
dynamics. In this work, we develop an online-learning-based
joint-optimization approach. In our approach, to learn an
appropriate utility function, we develop a neural-network-
based model that addresses the convoluted sample data issue
and achieves good accuracy based on data aggregation.
Based on the utility function learned, we formulate a global
network configuration optimization problem. To solve this
high-dimensional non-concave maximization problem, we
design a Gibbs-sampling-based algorithm that converges to
an optimal solution when a temperature parameter is small
enough. To speed up its convergence, we further design
an efficient algorithm that converges to a local optimum
promptly. To adapt to network dynamics, we develop an
online scheme that updates the learned utility function
and solves the corresponding optimization problem as the
network changes. To illustrate the idea, we use the case
study of pilot power configuration. The simulation results
show that our online utility model achieves a good prediction
accuracy, and our online scheme outperforms a benchmark
based on a distributed Q-learning algorithm.

The proposed approach has the potential to be applied
to other similar network configuration problems, such as
handoff threshold configuration, antenna adjustment, and
transmission power allocation. Future research includes in-
corporating network change detection mechanisms, and gen-
eralizing the framework to self-organizing networks (SON).
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